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Abstract—Driven by recent technological breakthroughs in
deep learning (DL), many recent automatic modulation classifi-
cation (AMC) methods utilize deep networks to classify the type
of modulation in the incoming signal at the receiver. However,
existing DL-based approaches suffer from limited scalability,
especially for unseen modulations or input signals from new
environments not used in training the DL model, thus not
ready for real-world systems such as software defined radio
devices. In this paper, we introduce a scalable AMC scheme
that provides flexibility for new modulations and adaptability to
input signals with diverse configurations. We propose a meta-
learning framework based on few-shot learning (FSL) to acquire
general knowledge and a learning method for AMC tasks. This
approach allows the model to recognize new unseen modulations
by learning with only a very small number of samples, without
requiring the entire model to be retrained. Additionally, we en-
hance the scalability of the classifier by leveraging a transformer-
based encoder, enabling efficient processing of input signals
with varying configurations. Extensive evaluations demonstrate
that the proposed AMC method outperforms existing techniques
across all signal-to-noise ratios (SNRs) on RadioML2018.01A
dataset.

Index Terms—Automatic modulation classification, few-shot
learning, meta-learning, Transformer, unseen dataset.

I. INTRODUCTION

Accurate classification of modulation types in received
signals is a key element of the wireless communication
system. Radio signal recognition and automatic modulation
classification (AMC) techniques play a crucial role in rec-
ognizing modulation types for a wide range of military
and civilian services, including dynamic spectrum access,
jamming detection, surveillance, and spectrum coexistence.

However, the design of a highly accurate AMC scheme
is challenging in the modern wireless communication envi-
ronment since various heterogeneous communication systems
coexist in a complex and non-cooperative manner. It is even
more challenging to perform the AMC task in cognitive
radio (CR) networks and Software Defined Radio (SDR)
systems, which offer the flexibility to utilize various wireless
communication services across a broad frequency range. In
CR and SDR environments, dynamic spectrum sensing and
access is performed over a wide frequency band in a non-
cooperative manner. This often leads to unreliable reception
and incomplete reception of signals. It is important to note
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that the AMC in these environments should be able to identify
modulation types even when the received samples do not
contain the entire packet information and may only have
partial information in the middle or tail [1].

Existing DL-based AMC methods are not yet suitable for
real-world deployment due to the limited scalability, espe-
cially for unseen modulations or input signals with different
configurations not seen during training. In non-cooperative
and complex real-world communication environments, the
received inputs often differ from the features used in the
model training phase, leading to significant classification
errors. Note that the performance of most DL-based AMC
methods heavily relies on a large amount of training data.
For instance, most DL-based AMC methods use fixed frame
lengths as inputs to models and do not consider the scenarios
with variable input sizes [2]. Fig. 1 shows the classifica-
tion accuracy of ResNet-based and CNN-based methods [2],
[3] for different input frame lengths. We can observe that
the shorter the length of the input frame, the worse the
classification performance where models were trained only
with fixed length frames of 1024 samples. In particular, it
is noteworthy that both models exhibit an accuracy drop
below 80% when the length is 256. Unfortunately, it is nearly
impossible to collect sufficient labeled training datasets in
advance for numerous combinations of the target classes, such
as different frame length, and different signal-to-noise ratios
(SNRs), to sustain classification accuracy. Besides, when
introducing unseen modulation, prior solutions have to collect
a large number of samples and re-train the model. Therefore,
it is essential to develop a more intelligent and scalable
AMC technique that can adapt to new unseen modulations
and recognize input signals with complex combinations of
temporal and spatial features.

In this paper, we present a scalable AMC scheme that
offers flexibility for new unseen modulations and adaptability
to input signals with varying configurations. Our proposed
framework is built upon two key components: (i) a meta-
learning framework utilizing few-shot learning (FSL), and (ii)
a feature extractor based on a Transformer architecture [5]. In
our proposed meta-learning framework, we first train the base
encoder on a source dataset for a given set of modulations and
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Fig. 1. Impact of input frames’ lengths on the classification accuracy of
ResNet-based and CNN-based method [2], [3] under different SNR values
based on the RadioML2018.01A [4].

then adapt the trained encoder to the new target modulations
using only a small number of newly collected samples.
This approach effectively resolves the challenges associated
with data collection and re-training overhead when dealing
with new unseen modulations. Furthermore, to reduce the
training overhead of the feature extractor for input signals
with diverse configurations, we leverage a Transformer-based
encoder [5] in designing the feature extractor for the pro-
posed AMC method. Through extensive evaluations on the
RadioML2018.01A dataset [4], we demonstrate that the pro-
posed method consistently outperforms existing techniques.

II. PROPOSED METHOD

In this section, we first present the proposed meta-
learning framework for AMC task and then explain its details
including meta-training and meta-testing processes.

A. Overview

Fig. 2 illustrates the architecture of our proposed meta-
learning system. Our system consists of two main modules: a
meta-learning module and a meta-testing module. The meta-
learning module uses source datasets for given modulation
classes (we will denote these modulations as seen modu-
lations) and trains the modulation classifier, in particular
Transformer-based encoder fy, where 6 represents the train-
able parameters. Unlike traditional supervised learning meth-
ods, our meta-learning approach acquires meta-knowledge
that facilitates faster learning on new tasks even with limited
samples (Section II-B). During the meta-training phase, the
encoder fy learns general meta-knowledge to extract appro-
priate feature vectors for AMC tasks, where meta-knowledge
represents the underlying essence or commonality among
multiple tasks [6]. To do this, we employ the methodology
of learning the metric space using prototypes of each class
introduced in ProtoNet [7]. Once trained, meta-testing module
uses the encoder fy for new unseen modulations with fewer
collected samples (Section II-C).

Fig. 3 illustrates the architecture of the encoder and its
operational sequence. To enhance the scalability of the model
with respect to the dataset size, we employed the Transformer-
based feature extractor proposed by Dosovitskiy et al. in
[5]. This approach induces performance improvement of the
model through simple hyperparameter manipulations when
dealing with extensive datasets. Each module has an input
layer of 2 x N size that takes IQ components of a signal
data as input. The IQ components are divided into fixed-size
patches, and each patch is linearly embedded after adding
position information embeddings.

TABLE I
DETAILS OF PROPOSED MODEL HYPERPARAMETERS
Layers | Hidden size dim | MLP size | Heads | Patch size
8 36 32 9 2x16

Table I summarizes the hyperparameters applied to the
encoder of proposed system. The hyperparameters were de-
termined through empirical experiments to achieve optimal
performance.

B. Meta-Training

Meta-training module trains the base encoder fy with
meta-knowledge for the ACM task. Learning at this phase
proceeds on an episodic basis. Each episode € is composed
of (i) a support set (training set) for prototype generation and
(ii) a query set (validation set) for modulation prediction and
parameter updating. To generate the support set and query
set for each episode, we randomly choose k categories from
the source dataset and randomly select n instances from each
category. Here, k represents the total number of classes in the
support set, which is also referred to as k-way, and n repre-
sents the number of data samples for each class (way), known
as n-shot. Here, the classes of the modulation data used in
training are considered as seen modulations. The /N annotated
data used as input, denoted as S = {(z1,y1),.-., (TN, YN)}s
have a frame size of 1 x 2 x 1024 (C x H x W), which is
provided in RadioML2018.01A [4] dataset. The correspond-
ing class labels are represented as y; = {1,..., K}.

Within a single episode, the support set and query set data
are divided and tokenized at the patch level, as mentioned
earlier, and fed into the encoder. For the support set, the
prototype ¢; is generated using the average of the extracted
feature vectors (embedded support points) from the annotated
data set S; belonging to class .

Cl = v~

|;| > folw) (1)

l
(zi,yi)€S)

The feature vectors extracted from the query set are classified
using the generated prototypes based on a distance function
d, which can be a method like Euclidean distance or cosine
similarity. In ProtoNet [7], Euclidean distance was initially
used and demonstrated excellent performance. Therefore, we
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chose to use Euclidean distance as the distance metric. Based
on softmax over the distances between the query point =
and the prototypes in the embedding space, we generate a
distribution over classes. The equation for this distribution is
as follows:

_ eap(—d(fy(). 1))
> exp(—d(fo(x), cr))
As each episode progresses, the parameters 6 of fy are up-
dated using the Adam optimizer [8] to minimize the negative
log probability of the actual class k, as defined in Eq. II-B.

@

of unseen modulations, allowing us to evaluate the model’s
adaptation to a new domain and assess its generalization
capability. Note that the query set in the meta-testing phase
is no longer used to adjust the parameters 6 and is only used
for testing [6].

As we will discuss in Section III, we consider applying
our method to SDR platform scenarios. For example, an
operational SDR equipment needs to be upgraded in order
to recognize new modulations that are not included in the

Algorithm 1 Process of meta training. k<K is the number of
classes per episode, F is the selected k classes for episode,
N is the number of support sample per class, N¢ is the
number of query sample per class, m is the bias-corrected
moving average of the gradients, ¢ is the bias-corrected
moving average of the squared gradients, « is the learning rate
and € is a small value used for numerical stability. RANDOM
UNIFORM(S, V) denotes uniform and random selection of N
values from the S set.
Input: Training set Siqin = {(z1,¥1), -,
Output: Trained base encoder fy
for [ in {1,... .k} do

Ssupport < RANDOM UNIFORM(SE, , Ng)

Squery < RANDOM UNIFORM(SE, \Ssupport, NQ)

a N Z("L‘ivyi)esl fo(xi)
end for

(rn,yn)}

L) = -1 = k|z) The algorithm 1 illustrates th
nfeti—traininogp:(%ess for| ?n e iioaclleg T L + 0 {Initialize loss L}
&P pisode. for [ in {1.... k} do
C. Meta-Testing for (z,y) in Sque,y do
Meta-testing module utilizes the base encoder fy trained 00— \/;Jrem
through the meta-training phase. In the meta-testing (or end for
testing) phase, both the support set and the query set consist ~ end for
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Authorized licensed use limited to: Gachon University. Downloaded on April 01,2025 at 05:02:59 UTC from IEEE Xplore. Restrictions apply.



MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

current model’s training. For this purpose, the meta-testing
module can include the datasets for seen modulations used
in the training phase, as well as new unseen modulations.
The results of these tests can be found in Section III-C. A
commonly used setting for support sets in most FSL-based
approaches is 5-shot, meaning that the support set consists
of five data samples. Similar to the meta-trainig phase, meta-
testing module generates k' prototypes using the trained fj,
where k' denotes the number of target classes for meta-
testing. The query set used for inference is classified based
on the Eudclidean distance between the embedding vectors
and the prototypes. In our experiments, we investigated the
impact of the &’ value, the results of which can also be found
in section III-C.

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed system through a series of extensive experiments. These
experiments include comparing meta-learning and supervised
learning approaches (Section III-B), evaluating the few-shot
learning capability of our method on new Unseen modulations
(Section III-C), and examining the scalability of our method
for different input data sizes (Section III-D).

The training dataset ratio pirqsn is set to 0.8, and Nepocn
is set to 50. The optimizer used is Adam [8], with an initial
learning rate o of 0.001. A scheduler with a step size of 10
and ~ of 0.9 is employed. The experiments were conducted
on an Ubuntu 20.04 system with an Intel(R) i9-9900KF
processor and GeForce RTX 2080 Ti 11GB GPU.

A. Dataset

We conducted our experiments using the
RadioML2018.01A [4] dataset widely in the field of
AMC research. This dataset comprises a total of 24
modulations, including analog modulations such as AM-
DSB-WC, AM-DSB-SC, AM-SSB-WC, AM-SSB-SC, FM,
and digital modulations such as OOK, 4ASK, 8ASK, BPSK,
QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK,
128 APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM,
GMSK, and OQPSK. Each frame consists 1024 samples for
the 1Q components. The dataset consist of 4096 frames for
each modulation-SNR combination, resulting in a total of
2.5 million frames. The SNR range spans from -20 dB to 30
dB with a step size of 2 dB.

B. Comparing Meta-Learning and Supervised Learning

First, we conducted an evaluation to compare the clas-
sification accuracy of meta-learning models including our
method and supervised learning models for the 24 modula-
tions. The supervised learning models used in the experiments
include ResNet [4] based and CNN [2] based models, where
we will denote them as ResNet and CNN, respectively. For
the meta-learning models, we employed ProtoNet [7] along
with our proposed model. These four models were trained
using four different SNR ranges: [0, 20] dB, [0, 10] dB, [-10,
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Fig. 4. Performance comparison between meta-learning (our proposed
method and [7]) and supervised learning (ResNet [4] and CNN [2]) models
for all 24 modulations.

20] dB, and [-20, 20] dB. Their performance was evaluated
in terms of accuracy, with a step size of 2 dB, across the
entire range of [-20 to 20] dB. This experiment is designed to
assess the degree of dependency on training data and evaluate
scalability. We conducted training using partial data instead
of the entire dataset and evaluated the performance within the
[-20, 20] dB range.

Fig. 4 shows the results of the evaluation. We observed
significant variations in the performance of the ResNet and
CNN models depending on the size of the training data.
In particular, it is noteworthy that both models performed
worse when trained with training data set containing the low
SNR ranges of [-20, -10] dB. The CNN model’s performance
exhibited a significant drop in this scenario.

In contrast, the meta-learning-based ProtoNet and our
proposed technique were relatively unaffected by the size
of the training data. However, ProtoNet performed better
only in the high SNR range and had lower accuracy overall.
On the other hand, the proposed model maintained high
overall performance regardless of the range of training data,
and achieved the highest accuracy of 95.76% when trained
with partial dataset in the SNR range of [-10, 20] dB. The
meta-learning approach demonstrated high performance and
high scalability in AMC classification compared to traditional
supervised learning methods.

We also compared the complexity of the four models
in Table II. Despite its higher computational complexity
compared to the other three models, the proposed model
demonstrated the best performance across all 24 modulations.

C. Unseen Modulation

Next, we evaluate the adaptation performance of our
proposed method to new modulation types. As mentioned
earlier, one of the advantages of meta-learning is its ability to
quickly adapt the model to new unseen classes. We conducted
experiments where the proposed model was trained on 12
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TABLE II
COMPLEXITY COMPARISON OF DIFFERENT MODELS
Model FLOPs | Memory | Speed | Params
ResNet [4] 0.026G | 5.32MB | 0.004s | 0.17M
CNN [2] 0.038G | 16.69MB | 0.005s | 0.04M
ProtoNet [7] | 0.014G | 7.06MB | 0.002s | 0.02M
Proposed 0.046G | 15.98MB | 0.005s | 0.72M
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Fig. 5. Performance comparison for three test cases in Table IIIL.

randomly chosen modulations (denoted as Seen modulations)
out of the total 24 modulations. We then randomly selected 5
modulations out of the remaining 12 modulations as Unseen
modulations for testing. We divided the test cases into three
categories as indicated in Table III. For each test case, we
conducted 100 test iterations (i.e., selecting five Unseen
modulations randomly for each iteration) to calculate the
average accuracy. The default value for “’shot” was set to
5-shots.

TABLE III
12 MODULATIONS USED FOR TRAINING BY TEST CASE
Test Case Modulations
A ’8ASK’, ’'BPSK’, ’32PSK’, ’16APSK’, ’64APSK’,
’128APSK’, 128QAM’, ’AM-SSB-WC’, *AM-SSB-SC’,
’AM-DSB-SC’, 'GMSK’, "OQPSK’
B ‘BPSK’, ‘8PSK’, ’32PSK’, ’'32APSK’, ’'64APSK’,
’128APSK’, *64QAM’, 'AM-SSB-WC’, ’AM-DSB-WC’,
’FM’, ’"GMSK’
C ’8ASK’, "BPSK’, ’QPSK’, 16PSK’, *32PSK’, *32APSK’,
’32QAM’, "128QAM’, 'AM-SSB-WC’, *AM-DSB-WC’,
FM’, ’"GMSK’

Fig. 5 depicts the accuracy results for the three test cases,
illustrating an average accuracy of approximately 80% in
the high SNR region for the five randomly selected Unseen
modulations. The variation in accuracy among the test cases
is influenced by the complexity of the modulations employed
during the training phase, as more complex modulations tend
to exhibit better performance during the inference phase. For
the subsequent experiments, we used the Test B category in
Table III.

Fig. 6 shows the results of an experiment that examined
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Fig. 6. Impact of number of shots on classification performance for 5-way
(five Unseen modulations/classes) with 1, 5, 10, and 15 different shots.
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Fig. 7. Performance evaluation for different number of ways, i.e., 3, 5, and
7 Unseen modulations, with a fixed 5-shot learning.

the impact of shots on each class (way) of the Support Set
during the meta-testing phase. For the 5-way classification,
we used the {1,5,10,15} shots. The results indicate that
that the accuracy increases as the number of shots increases.
With 15 shots, our method achieved 90% accuracy on the
Unseen modulations, demonstrating its ability to quickly
acquire general knowledge about a new domain even with
a few dataset.

Fig. 7 shows the classification performance results for three
different numbers of Unseen modulations, using a fixed 5-
shot. We conducted tests with Unseen modulations consisting
of 3, 5, and 7 classes. The results indicate that with a decrease
in the number of Unseen modulations, there is an improve-
ment in the differentiation of prototypes within the embedding
space, resulting in higher performance. Particularly, a signifi-
cant increase in classification accuracy is observed for lower
SNRs as the number of Unseen modulations decreases.

Fig. 8 represents an experiment tailored for the SDR plat-
form scenarios. It evaluates the performance by incorporating
both Seen modulations used in the training phase and Unseen
modulations. Despite the inherent challenges posed by the
12-way and 13-way configurations in the context of meta-
learning, our method achieved a high performance level,
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Fig. 8. Performance evaluation using both the 12 Seen modulations used
during training and additional Unseen modulations in the test phase.

surpassing 80% accuracy with 5-shot learning. We expect
that performance can be further improved by investigating the
hyperparameters and by leveraging more powerful computing
environments. These possibilities will be explored further in
our future work.

D. Input Size Scalability

In real-world scenarios, modulation classification may be
required for signals with incomplete reception or varying
lengths. In many existing AMC methods, however, the input
frame size was often neglected in both model design and
evaluation. Fig. 1 clearly shows that previous studies that
achieved high performance are not suitable for such scenarios.
Therefore, we conducted additional experiments to assess the
scalability of our proposed model for frame lengths smaller
than the given 2 x 1024 frames. Specifically, we experimented
with frame lengths of 2 x {256,512,1024} to evaluate the
model’s performance and generalizability.

Fig. 9 presents the evaluation results of the proposed model
using smaller input frames compared to the existing models.
All models were trained using 2 x 1024 frames. Thanks to
the self-attention mechanism of the Transformer, the proposed
model effectively captures the interactions between sample
patches within the same frame. Consequently, achieving a
performance of 80% or higher even with a smaller input frame
size, surpassing the performance of other models evaluated
with 2 x 1024 frames.

IV. CONCLUSION

In this work, we presented a scalable Automatic Modu-
lation Classification (AMC) scheme that offers flexibility for
handling new modulations and adaptability to diverse input
signal configurations. By leveraging a meta-learning frame-
work based on few-shot learning (FSL), we enabled the model
to acquire general knowledge and efficiently recognize new
unseen modulations using a small number of samples, without
the need for complete retraining. Furthermore, we enhanced
the scalability of the classifier by leveraging a Transformer-
based encoder, enabling effective processing of signals with
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Fig. 9. The impact of varying input frame lengths on the classification
accuracy in the RadioML2018.01A dataset [4].

varying configurations. Through extensive evaluations on the
widely used RadioML2018.01A dataset, we demonstrated the
effectiveness of our proposed AMC method over existing
techniques in all SNR ranges.

For future research, we will study on optimizing hyperpa-
rameters, such as number of ways and shots, in our proposed
meta-learning technique. Additionally, we plan to explore the
applicability of this technique in other domains and fields.
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